Programme des colles de chimie

PC*

Semaine du 27 février 2023

$\mathbf{Q}\mathbf{1}$ - modèle quantique de l'atome

Notions et contenus	Capacités exigibles
Fonctions d'onde électroniques Ψ de l'atome	Interpréter $ \Psi ^2$ comme la densité de probabilité de
d'hydrogène.	présence d'un électron en un point et la relier à la
	densité de charge.
Nombres quantiques n, l, m_l, m_s .	
Énergie et rayon associés à une fonction	Prévoir qualitativement, pour l'atome
d'onde.	d'hydrogène et les ions hydrogénoïdes,
	l'évolution du rayon et de l'énergie associés à une
	fonction d'onde en fonction du nombre quantique
	principal.
Orbitales des atomes polyélectroniques,	Dessiner l'allure des orbitales s et p.
représentation schématique.	
Configuration électronique d'un atome et d'un	Établir la configuration électronique d'un atome
ion monoatomique.	ou d'un ion à l'état fondamental.
Électrons de cœur et de valence.	Déterminer le nombre d'électrons non appariés
	d'un atome dans son état fondamental.
Notion qualitative de charge effective.	Relier qualitativement le rayon associé à une
	orbitale atomique à la charge effective.
Électronégativité.	Relier qualitativement l'énergie associée à une
	orbitale atomique à l'électronégativité de l'atome.
Rayon d'une orbitale atomique, polarisabilité.	Relier qualitativement le rayon associé aux
	orbitales de valence d'un atome à sa polarisabilité.
Architecture du tableau périodique des	Relier la position d'un élément dans le tableau
éléments.	périodique à la configuration électronique de
	l'atome associé dans son état fondamental.
Organisation par blocs.	Situer dans le tableau les familles suivantes :
	métaux alcalins et alcalino-terreux, halogènes et
	gaz nobles.

$\mathbf{Q2}$ - orbitales moléculaires et étude orbitalaire de la réactivité

Notions et contenus	Capacités exigibles
Construction des orbitales moléculaires	Identifier les conditions d'interaction de deux
Méthode de Combinaison Linéaire des	orbitales atomiques : recouvrement et critère
Orbitales Atomiques	énergétique
Interaction de deux orbitales atomiques sur	Construire des orbitales moléculaires de
deux centres:	molécules diatomiques par interaction d'orbitales
- recouvrement;	atomiques du même type (s-s, p-p).
- orbitale liante, antiliante, non liante;	Reconnaître le caractère liant, antiliant, non liant
- énergie d'une orbitale moléculaire;	d'une orbitale moléculaire à partir de sa
- orbitale σ , orbitale π	représentation convetionnelle ou d'une surface
- représentation conventionnelle d'une orbitale	d'iso-densité.
moléculaire par schématisation graphique de	Proposer une représentation conventionnelle
la combinaison linéaire des orbitales	d'une orbitale moléculaire tenant compte d'une
atomiques.	éventuelle dissymétrie du système.
Interaction d'orbitales de fragments.	Justifier la dissymétrie d'une orbitale moléculaire
Diagramme d'orbitales moléculaires :	obtenue par interaction d'orbitales atomiques
occupation des niveaux, orbitales frontalières	centrées sur des atomes d'éléments différents.
haute occupée et basse vacante, cas des	Prévoir ou interpréter l'ordre énergétique des
entités radicalaires.	orbitales moléculaires et établir qualitativement
Ordre de liaison dans les molécules	un diagramme énergétique d'orbitales d'une
diatomiques.	molécule diatomique.
1	Justifier l'existence d'interactions entre orbitales
	de fragments en termes de recouvrement ou
	d'écart d'énergie.
	Décrire l'occupation des niveaux d'un diagramme
	d'orbitales moléculaires.
	Identifier les orbitales frontalières à partir d'un
	diagramme d'orbitales moléculaires de valence
	fourni.
	Interpréter un diagramme d'orbitales
	moléculaires obtenu par interaction des orbitales
	de deux fragments, fournie.
	Relier, dans une molécule diatomique, l'évolution
	des caractéristiques de la liaison à l'évolution de
	l'ordre de liaison.
Prévision de la réactivité	Utiliser les orbitales frontalières pour prévoir la
Approximation des orbitales frontalières.	réactivité nucléophile ou électrophile d'une entité
11	(molécule ou ion).
	Interpréter l'addition nucléophile sur le groupe
	carbonyle et la substitution nucléophile entermes
	d'interactions frontalières.
	Comparer la réactivité de deux entités à l'aide des
	orbitales frontalières.

Chimie organique : toutes réactions déjà vues en première et en deuxième année