Programme des colles de chimie

PC*

Semaine du 7 novembre 2022

T4 – changements de phase des mélanges binaires

Un premier TP a été fait mais en TP tournant : certains ont donc déjà fait le TP distillation, d'autres le TP hydrodistillation. Tous auront fait les deux TP le mercredi 9/11.

Notions et contenus	Capacités exigibles
Corps pur, mélange, système binaire,	Convertir des fractions molaires en fractions
fractions molaire et massique.	massiques dans le cas de systèmes binaires et
	inversement.
Miscibilité totale, partielle ou nulle.	Interpréter la miscibilité à l'échelle microscopique
	par des interactions entre entités.
	Citer la température comme facteur d'influence
	de la miscibilité.
Diagrammes isobares d'équilibre liquide-	Construire un diagramme isobare d'équilibre
vapeur:	entre phases d'un mélange binaire à partir
- avec miscibilité totale à l'état liquide,	d'informations relatives aux courbes d'analyse
- avec miscibilité nulle à l'état liquide,	thermique.
- avec miscibilité partielle à l'état liquide.	Décrire les caractéristiques des mélanges
Théorème des moments chimiques	homoazéotropes, hétéroazéotropes.
	Exploiter les diagrammes isobares d'équilibre
	entre phases, pour une composition en fraction
	molaire ou massique donnée :
	- tracer l'allure de la courbe d'analyse thermique
	en indiquant le nombre de degrés de liberté du
	système sur chaque partie de la courbe;
	- déterminer les températures de début et de fin
	de changement d'état;
	- déterminer la composition des phases en
	présence à une température fixée ainsi que les
	quantités de matière ou les masses dans chaque
	phase.
	Déterminer la solubilité d'une des espèces
	chimiques du système binaire dans l'autre à partir
	du diagramme binaire.
Distillations.	Interpréter une distillation simple, une
	hydrodistillation, une distillation fractionnée, à
	l'aide des diagrammes isobares d'équilibre
	liquide-vapeur.

Capacité expérimentale

Mettre en œuvre une distillation fractionnée ou une hydrodistillation à la pression atmosphérique.

Révisions de chimie organique de première année

Questions de cours

Chaque étudiant aura en début de colle une question de cours de chimie organique choisie dans la liste suivante.

- 1. Réactions de substitution nucléophile bimoléculaire : mécanisme, profil énergétique, aspects cinétiques et stéréochimiques.
- 2. Réactions de substitution nucléophile monomoléculaire : mécanisme, profil énergétique, aspects cinétiques et stéréochimiques.
- 3. Réactions de β -élimination bimoléculaire : mécanisme, profil énergétique, propriétés cinétiques et stéréochimiques, régiosélectivité.
- 4. Réaction d'un organomagnésien mixte avec un aldéhyde, une cétone ou le dioxyde de carbone : bilan de la réaction, conditions expérimentales, mécanisme et intérêt en synthèse.
- 5. Synthèse de Williamson d'un éther-oxyde : bilan, conditions expérimentales et mécanisme.
- 6. Déshydratation acido-catalysée d'un alcool : conditions expérimentales, régiosélectivité, stéréosélectivité et mécanismes.
- 7. Conversion d'un alcool en halogénoalcane par une solution concentrée d'halogénure d'hydrogène : conditions expérimentales et mécanismes.
- 8. Formation d'un alcène par élimination basique sur un ester sulfonique : conditions expérimentales et mécanisme.
- 9. Formation d'un halogénoalcane par substitution sur un ester sulfonique : conditions opératoires et mécanisme.
- 10. Réduction des composés carbonylés en alcool : conditions expérimentales et mécanisme (l'ion tétrahydroborate est modélisé par un ion hydrure).
- 11. Protection du groupe carbonyle par un diol (et réciproquement) : conditions expérimentales et mécanisme;
- 12. Hydrolyse acide d'un (a)cétal : conditions opératoires et mécanisme;

Programme de première année

Structure des entités chimiques organiques

Notions et contenus	Capacités exigibles
Isomérie de constitution.	
Stéréoisomérie de conformation en série aliphatique non cy-	Comparer la stabilité de plusieurs conformations.
clique; ordre de grandeur de la barrière conformationnelle.	Interpréter la stabilité d'un conformère donné.
Représentation de Newman.	
Représentation topologique.	
Stéréoisomérie de configuration : chiralité, énantiomérie, diastéréoisomérie descripteurs stéréochimiques $R,S,Z,E.$	Attribuer les descripteurs stéréochimiques aux centres stéréogènes.
	Déterminer la relation d'isomérie entre deux isomères. Représenter une entité chimique organique à partir de son nom, fourni en nomenclature systématique, en tenant compte de la donnée d'éventuelles informations stéréochimiques, en utilisant un type de représentation donné.
Activité optique, pouvoir rotatoire, loi de Biot.	Relier la valeur du pouvoir rotatoire à la composition d'un mélange de stéréoisomères.
	Déterminer la composition d'un système chimique ou suivre une transformation chimique en utilisant l'activité optique.
Séparation de diastéréoisomères et d'énantiomères	Citer des analogies et différences de propriétés entre des
	diastéréoisomères et des énantiomères.
	Reconnaître des protocoles de séparation de stéréoisomères.

Réactivité des espèces organiques et premières applications en synthèse

Notions et contenus	Capacités exigibles
Réactivité des espèces organiques et écriture des mécanismes réactionnels	
Conséquences de la structure sur la réactivité : nucléophile, électrophile.	Identifier les sites électrophiles et/ou nucléophiles d'une entité chimique.
Modélisation microscopique d'une transformation : mécanisme réactionnel, acte élémentaire, molécularité, complexe activé, intermédiaire réactionnel.	Distinguer l'équation chimique symbolisant une réaction chimique de l'équation traduisant un acte élémentaire. Distinguer un intermédiaire réactionnel d'un complexe activé. Tracer et commenter un profil énergétique correspondant à un acte élémentaire ou à plusieurs actes élémentaires successifs. Donner la loi de vitesse d'une réaction se déroulant en un seul acte élémentaire.
Interprétation microscopique de l'influence des facteurs cinétiques.	Interpréter l'influence des concentrations et de la température sur la vitesse d'un acte élémentaire, en termes de fréquence et d'efficacité des chocs entre entités.
Formalisme des flèches courbes.	Utiliser le formalisme des flèches courbes pour rendre compte d'un acte élémentaire et le relier aux caractères nucléophile et électrophile des entités.
Synthèse organique en laboratoire	
Déroulement expérimental d'une synthèse organique : étapes de transformation, de séparation, de purification et de caractérisation. Détermination du rendement.	Mettre en œuvre un protocole expérimental sur un exemple simple et représentatif d'une synthèse organique en laboratoire. Justifier et réaliser les différentes étapes de cette synthèse.
Modifications de groupe caractéristique : exemple des halogénoalcanes	
Substitution nucléophile aliphatique : mécanismes limites $S_{\rm N}2$ et $S_{\rm N}1$; propriétés cinétiques et stéréochimiques.	Justifier le choix d'un mécanisme limite S_N2 et S_N1 par des facteurs structuraux des réactifs et par des résultats expérimentaux sur la stéréochimie des produits ou sur la loi de vitesse de la réaction. Prévoir ou analyser la stéréosélectivité ou la stéréospécificité éventuelle d'une substitution nucléophile. Interpréter des différences de réactivité en termes de polarisabilité. Utiliser le postulat de Hammond pour interpréter l'influence de la stabilité du carbocation sur la vitesse d'une S_N1 .
$\beta\text{-\'elimination};$ mécanisme limite E2, propriétés stéréochimiques, régiosélectivité.	Prévoir ou analyser la régiosélectivité, la stéréosélectivité et la stéréospécificité éventuelle propriétés stéréochimiques, régiosélectivité d'une β -élimination sur un halogénoalcane acyclique. Interpréter la formation de produits indésirables par la compétition entre les réactions de substitution et d'élimination.
Construction du squelette carboné : synthèse et utili- sation d'organomagnésiens mixtes	
Organomagnésiens mixtes : propriétés nucléophiles; préparation à partir des espèces halogénées; inversion de polarité (Umpolung) lors de l'insertion du magnésium; intérêt des organométalliques dans la construction d'une chaîne carbonée.	Déterminer le produit formé lors de la réaction d'un organomagnésien mixte sur un aldéhyde, une cétone ou le dioxyde de carbone et inversement, prévoir les réactifs utilisés lors de la synthèse magnésienne d'un alcool ou d'un acide carboxylique.
Addition nucléophile, sur l'exemple des réactions entre un organomagnésien mixte et un aldéhyde, une cétone ou le dioxyde de carbone : mécanisme.	Décrire et mettre en œuvre un protocole de préparation d'un organomagnésien mixte et de son utilisation pour créer une liaison carbone-carbone. Justifier les étapes et conditions expérimentales, y compris l'hydrolyse terminale.

Techniques spectroscopiques de caractérisation

Notions et contenus	Capacités exigibles
Spectroscopies d'absorption UV-visible et infrarouge	
Nature des transitions associées aux spectroscopies UV-visible	Relier la longueur d'onde du rayonnement absorbé à l'énergie
et infrarouge, domaine du spectre des ondes électromagnétiques	de la transition associée.
correspondant.	Relier la fréquence du rayonnement IR absorbé aux ca-
Transmittance, absorbance.	ractéristiques de la liaison dans le cadre du modèle classique
	de l'oscillateur harmonique.
	Identifier, à partir du spectre infrarouge et de tables de nombres
	d'onde de vibration, une liaison ou un groupe caractéristique
	dans une molécule organique.
Spectroscopie de résonance magnétique nucléaire du	
proton	
Notion de déplacement chimique, de constante de couplage, d'intégration.	Interpréter ou prévoir l'allure d'un massif à partir de l'étude des couplages.
Couplage du premier ordre A_mX_p , $A_mM_pX_q$.	Confirmer la structure d'une entité à partir de données spectro- scopiques infrarouge et/ou de résonance magnétique nucléaire du proton, les tables de nombres d'onde caractéristiques ou de
	déplacements chimiques étant fournies.
	Déterminer la structure d'une entité à partir de données spec-
	troscopiques et du contexte de formation de l'espèce chimique
	dans une synthèse organique.
	Valider la sélectivité d'une transformation à partir de données spectroscopiques.
	Déterminer à partir des intégrations les proportions de deux
	constituants d'un mélange.

Réactions d'oxydoréduction en chimie organique

Notions et contenus	Capacités exigibles
Niveau d'oxydation des espèces organiques	Identifier, le cas échéant, une conversion d'espèce organique
Les groupes caractéristiques et leur niveau d'oxydation.	comme un processus d'oxydation ou de réduction et associer
	les demi-équations électroniques correspondantes.
Un exemple d'interconversion entre groupes ca-	
ractéristiques : du groupe hydroxyalkyle au groupe car-	
bonyle et inversement	
Oxydation des alcools selon leur classe ; principe de l'oxydation contrôlée des alcools primaires.	Déterminer le ou les produits d'oxydation d'un alcool selon sa classe. Identifier le produit d'oxydation d'un alcool primaire à l'aide de données expérimentales ou spectroscopiques.
Réduction du groupe carbonyle des aldéhydes et cétones en alcools par action du tétrahydroborate de sodium : mécanisme réactionnel en modélisant l'ion tétrahydroborate comme un ion hydrure.	Analyser à l'aide de données expérimentales la chimiosélectivité de réducteurs dans le cadre d'une stratégie de synthèse.

Activation de groupes caractéristiques

Notions et contenus	Capacités exigibles
Activation de groupe caractéristique	
Activation nucléophile des alcools et phénols Formation d'alcoolates par réaction acido-basique ou d'oxy- doréduction.	Comparer la nucléophilie d'alcools de différentes classes à l'aide d'arguments stériques. Comparer la nucléophilie d'un alcool et de sa base conjuguée. Choisir une base pour déprotoner un alcool ou un phénol à partir d'une échelle de pK_a .
Synthèse d'éther-oxyde par la méthode de Williamson; mécanisme réactionnel.	Proposer une voie de synthèse d'un éther-oxyde dissymétrique. Interpréter la formation de produits indésirables par la compétition entre les réactions de substitution et d'élimination.
Activation électrophile des alcools Activation in situ par protonation — déshydratation acido-catalysée d'un alcool tertiaire (conditions opératoires, régiosélectivité et stéréosélectivité éventuelles, mécanisme limite E1); compétition substitution-élimination dans le cas des alcools secondaires et tertiaires. — conversion d'un alcool en halogénoalcane par action d'une solution concentrée d'halogénure d'hydrogène, mécanismes limites. Formation d'esters sulfoniques — conversion d'un alcool en ester sulfonique; — formation d'alcène par élimination basique sur un ester sulfonique, mécanisme; — formation d'espèces chimiques par substitution sur un ester sulfonique, mécanisme.	Comparer les réactivités des liaisons carbone-hétéroatome dans le cas des halogénoalcanes, des alcools, des esters sulfoniques et des ions alkyloxonium. Prévoir les produits pouvant se former lors de la déshydratation d'un alcool, indiquer le ou les produits majoritaires. Commenter dans une synthèse multi-étapes le choix d'une activation in situ par protonation ou par passage par un tosylate ou un mésylate d'alkyle.
Activation électrophile du groupe carbonyle Acétalisation des aldéhydes et des cétones : conditions expérimentales (APTS, appareillage de Dean-Stark), mécanisme limite de l'acétalisation en milieu acide.	Expliquer qualitativement l'augmentation de l'électrophilie du groupe carbonyle par protonation.
Hémiacétalisation acido-catalysée du glucose : conditions opératoires, mécanisme limite de l'hémiacétalisation en milieu acide.	Discuter la régiosélectivité de la réaction d'hémiacétalisation du glucose. Interpréter la mutarotation du glucose par le caractère renversable de l'hémiacétalisation.

Protection de groupes caractéristiques et stratégie de synthèse

Notions et contenus	Capacités exigibles
Protection-déprotection	
Protection-déprotection du groupe carbonyle des aldéhydes et cétones par un diol; conditions expérimentales, mécanisme de l'hydrolyse acide.	Justifier la nécessité de protéger un groupe caractéristique dans une synthèse multi-étapes. Identifier les étapes de protection et de déprotection d'un groupe carbonyle, d'un groupe hydroxyle ou d'un diol dans une synthèse multi- étapes.
Protection-déprotection du groupe hydroxyle : utilisation d'une banque de réactions fournie.	Proposer ou justifier, à partir d'une banque de réactions four- nie, une méthode adaptée de protection du groupe hydroxyle. Analyser une synthèse multi-étapes en termes de stratégie de synthèse : ordre des étapes, protection de groupes ca- ractéristiques.
Approche élémentaire de l'analyse rétrosynthétique	
Schéma rétrosynthétique.	Proposer, à partir d'un schéma rétrosynthétique simple donné, une voie de synthèse d'une espèce cible. Concevoir une stratégie de synthèse pour une molécule simple. Choisir une stratégie de synthèse minimisant les impacts environnementaux.